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Continuous Symmetry Analysis of NMR Chemical Shielding Anisotropy
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Background

We study how continuous deviation from exact symmetry
around a nucleus affects its nuclear magnetic resonance
(NMR) chemical shielding anisotropy (CSA), a problem
which is of relevance particularly to solid-state NMR stud-
ies.[1] Various relations between the components of the
NMR shielding tensor have been shown to emerge from
structural geometry considerations,[2] and these have been
used to predict the CSA.[1] Yet an inherent problem has fol-
lowed theoretical studies of NMR: While NMR theory is in-
timately linked to symmetry, the vast majority of molecules
are not symmetric. A basic question then arises: How are
characteristic NMR spectral parameters affected, when the
molecule under study deviates from symmetry? In other
words, when the molecule belongs to a certain point group,
the relations between the shielding tensor components are
known; but what happens to these relations when the mole-

cule is distorted from this point group? And, how does a
gradual symmetry distortion affect the gradual change in
anisotropy? Consider for instance a tetracoordinated mole-
cule, AB4, once perfectly tetrahedral (Td point group sym-
metry, Figure 1a), and then square-planar (D4h symmetry,

Figure 1b). The fact that these structures are of completely
different symmetries is reflected in their shielding tensors:
The tetrahedral structure can be placed in a frame of three
geometrically equivalent axes and has therefore a perfectly
isotropic shielding tensor and the CSA is zero. Of all possi-
ble conformations of an AB4 molecule, the isotropic shield-
ing is in fact the highest possible for the perfectly tetrahe-
dral AB4 molecule, since the symmetry around the central
atom is the highest possible. On the other hand, the square-
planar molecule can be placed in an axes frame so that two
axes are equivalent and one is unique (Figure 1b). This mol-
ecule is geometrically anisotropic, since all of the B atoms
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Figure 1. a) Perfect AB4 tetrahedral molecule (Td symmetry) is also per-
fectly isotropic and therefore perfectly shielded: x, y, and z directions are
equivalent. b) Planar square AB4 molecule (D4h symmetry) is anisotropic:
Its z direction (the “unique axis”) is exposed, and the shielding is greatly
reduced.
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are in the same plane and the z direction is exposed. Thus,
for the D4h molecule, anisotropy emerges. While the symme-
try arguments for these two extreme cases is straightfor-
ward, there is a whole world of AB4 molecules or molecular
fragments, which are neither perfectly tetrahedral, nor per-
fectly planar square,[3,4] but have structures which are either
of lower symmetry or even devoid of any symmetry alto-
gether. In all of these structures—which are in fact, the vast
majority of AB4 species—the nucleus of A experiences, of
course, some level of shielding anisotropy around it and yet
under the current state of art of NMR studies, little, if at all,
can be said about whatever relation there might exist be-
tween the reduced level of symmetry and the strength of the
anisotropy. Consider a gradual distortion that a perfect tet-
rahedron undergoes until it becomes a square (Figure 2):
When is it justified to stop considering the distorted tetrahe-
dron as a Td case for NMR purposes? After 5% distortion?
After 0.5%? Or midway to the planar structure?

It should be noted that changes in specific structural fea-
tures such as bond lengths and angles have been correlated
with NMR properties,[5–7] yet these do not solve the problem
we pose, because the CSA is indeed affected by the symme-
try around the relevant nucleus, namely by the whole array
of all bond angles and bond lengths. Thus, a measurement
tool for the degree of symmetry, a global parameter which
encompasses all bonds and angles, is in need for CSA-sym-
metry correlations analysis. To address this question—as
well as other many key symmetry-related issues in chemis-
try—we have advanced the notion of using a quantitative
continuous scale for evaluating the degree of symmetry. The
continuous symmetry measures (CSM) approach is briefly
described in the next section, and indeed, as will be shown
below, quantitative correlations between degree of symme-
try and NMR shielding parameters emerge. We have used
as a computational model the 29Si NMR of distorted SiH4

species (representing distortion during vibrational motions,
due to adsorption or to other condensed-phase interactions,
etc). While SiH4 was selected as a convenient model for
studying feasibility of the symmetry/NMR correlation analy-
sis approach, we also had in mind to use it as a lead com-
pound to more complex Si compounds studies in our re-

search groups, and particularly to the solid state NMR of
SiO2 materials.[8]

Model and Computational Details

The continuous symmetry measure (CSM): The continuous
symmetry measure of a structure is a (normalized root-
mean-square) distance function from the closest structure
which has the desired symmetry.[9–11] It is a special distance
function which seeks the distance to a required symmetry,
rather than to a preset reference structure (although on oc-
casions the two coincide). Thus, it is a distance function to a
structure that must be searched. Formally, given a (dis-
torted) structure composed of N vertices (say, a central
atom and the ligands attached to it), the coordinates of
which are {Ak, k = 1, 2, …, N}, one searches for the vertex
coordinates of the nearest perfectly G-symmetric object,
{Âk, k = 1, 2, …, N}. Once at hand, the symmetry measure
is defined as:

S ¼ min

PN

k¼1
jAk�Âkj2

PN

k¼1
jAk�A0j2

� 100 ð1Þ

where A0 is the coordinates vector of the center of mass of
the investigated structure

A0 ¼
1
N

XN

k¼1
Ak ð2Þ

The CSM defined in Equation (1) is independent of the po-
sition, orientation and size of the original structure. Equa-
tion (1) is general and allows one to evaluate the symmetry
measure of any structure relative to any symmetry group G.
To avoid size effects, the original structure is normalized to
the r.m.s distance from the center of mass of the structure
(placed at the origin) to all vertexes [the denominator in
Eq. (1)]. The bounds are 100�S�0, where S(G)=0 means
that the structure has the desired G symmetry. The symme-
try measure increases as it departs from G symmetry and
reaches a maximal value (not necessarily 100). All S(G)
values are on the same scale and are therefore comparable.
The main practical problem is how to find the nearest struc-
ture that has the desired symmetry, namely {Âk, k= 1, 2, …,
N}. Several algorithms have been developed in order to find
the nearest symmetric object,[9–11] and we use here the algo-
rithms described in ref. [11].
The CSM methodology has been applied successfully to

many symmetry related problems in physics, chemistry, bio-
chemistry and spectroscopy, and some examples are collect-
ed in references [4,12–17]. Of relevance to this report are
the relationships between octahedricity or trigonal prismaci-
ty, and the magnetic moment within a family of related spin
crossover complexes, which were found by Alvarez to be in-

Figure 2. Top: Gradual transition of a tetrahedral molecule to a square-
planar one. This is the “spread” distortion route that can be viewed
(bottom) as the gradual compression of a cube in which the initial tetra-
hedron is captured.
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dependent of the nature of the external perturbations ap-
plied;[12] the correlations between the CSM and electron
spin resonance;[17] and between the degree of symmetry and
electronic spectral transition energies and probabilities.[17]

The symmetry-distorted molecules

The randomly distorted structures : In order to determine
possible correlations with symmetry—not with specific geo-
metrical features—it was necessary to create a population in
which the symmetry around the nucleus is random. Thus, a
population of 200 randomly distorted SiH4 structures was
created for which the tetrahedral angles were selected ran-
domly but kept between 90–1808, representing the actual
range of A-Si-A angles found in various Si compounds.[18]

Since the experimental variability in Si�H bond lengths is
small, these where kept constant (1.48 S;[19] the S(G) values
change only very little if some randomness is allowed here
as well).

The “spread route” structures : Complementary to the ran-
domly distorted population would be a series of homologous
structures the distortion of which changes gradually and in a
predetermined way. For this purpose the gradual transition
from a perfect tetrahedron (Td) to a planar square (D4h)—
the highest possible symmetry point groups for AB4 struc-
tures—along a common distortion route known as the
“spread route” (Figure 2), was selected.[17,20,21] Note that a
characteristic of the spread route is that it maintains a D2

axial symmetry throughout. 23 equally-spaced structures
along that route were taken.[22] An important observation
has been that the spread planarization path[17,21] relates max-
imal symmetry (see below) with minimal energy.[4]

NMR computations : As for computation of the CSA, we
recall that its orientational dependence is expressed by a 3-
by-3 chemical shielding tensor, the diagonalization of which
provides the three principle components of the shielding
tensor—s11, s22, s33, defined as the largest, the medium and
the smallest components, respectively. For most molecules,
the three components are not equal, and the chemical
shielding becomes anisotropic. This anisotropy is traditional-
ly expressed through the CSA:

CSA ¼ s11� 1
2 ðs22 þ s33Þ ð3Þ

It can be seen that for a perfect tetrahedron (Figure 1a),
CSA=0. For a square-planar molecule (Figure 1b) the
shielding tensor is axially symmetric, namely s11 is unique
and the two others are equal. The NMR parameters of the
29Si nucleus were calculated using Gaussian 98[23,24] at the
B3LYP/6-31G* level.[25a] (Since the shielding tensor should
not depend on an arbitrarily chosen origin, a gauge inde-
pendent method (the gauge invariant atomic orbital
(GIAO) method) was used,[25b] in which the explicit field-de-
pendence is built into the atom-centered basis functions.) It

should be noted that despite being a small basis set (identifi-
cation of trends were more important to us than “true”
values at this stage), its selection gave very satisfactory re-
sults: The experimental value of 29Si in SiH4 for siso is 475.3
	 10 ppm,[26] whereas the B3LYP/6-31G* calculation gave
siso=484.24 ppm, which is within the error range of the ex-
perimental result.[27]

Results and Interpretations

The analyzed structures : Before entering the symmetry/
CSA relations, it is in order to comment on the random pop-
ulation of the distorted SiH4 structures formed as described
above. Given a random arrangement of four B ligands
around a central A atom, one can ask “what is the tetrahe-
dricity content, S(Td), of AB4?”. However, since many dif-
ferently distorted structures can have the same S(Td) values
(recall that the symmetry measure is a thermodynamic-like
global characterization parameter), it was found very useful
to characterize the symmetry content more uniquely by ana-
lyzing the distance of AB4 from the two highest possible
symmetry point groups, which are not sub-groups of each
other. For an AB4 structure these symmetries are, as men-
tioned above, Td and the planar D4h. Having the two param-
eters S ACHTUNGTRENNUNG(D4h) and S(Td) at hand, one can then draw a “sym-
metry map”, namely a plot of S ACHTUNGTRENNUNG(D4h) versus S(Td) for the
various AB4 structures under study. Symmetry maps proved
to be quite powerful in analyzing various symmetry devia-
tions of various families of molecules.[28] Let us then observe

the symmetry map of the structures we analyze (Figure 3):
First, it is seen that the Spread structures span from perfect
tetrahedricity, namely S(Td)=0 (and there is still some
degree of planarity in it, which is S ACHTUNGTRENNUNG(D4h)=33.33) to perfect
planarity (SACHTUNGTRENNUNG(D4h)=0; S(Td)=33.33). The full route from tet-
rahedricity to planarity exists here, simply because each
structure was built by choice. On the other hand, the collec-
tion of 200 structures was imposed by the random selection
rules, and it is clearly seen that the majority of structures

Figure 3. “Symmetry map” of the studied structures. Plotted is the degree
of square-planarity versus the degree of tetrahedricity for each structure.
Squares: The random population; triangles connected by line: Spread
structures.
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are nearer to tetrahedral than to planar. This is not surpris-
ing—the chance of hitting a 2D-planar or nearly planar
structure are very low (only in symmetry maps which con-
tain thousands of random structures are they obtained,[28]

and the chances of spreading the H atoms around the Si in a
3D fashion are much higher. (In fact, note that the chance
of hitting an exact tetrahedral structure is likewise very
low—indeed, there is none in Figure 3.)
Next note that the spread structures form the lower

bound of the random population. That lowest bound means
that upon conversion of a tetrahedron to a planar species,
that route is the most symmetric one from the point of view
that each of the points on it is characterized by the lowest
possible pair of S(Td)/SACHTUNGTRENNUNG(D4h) values.[17, 21] Indeed, we shall
see this extreme behavior also in the CSA analysis of this
group of structures.

The CSA-symmetry correlations : Intuitively one expects to
find that with increase of deviation from tetrahedral symme-
try, the CSA will increase (keeping in mind that the minimal

anisotropy is that for the perfect tetrahedron). Figure 4 suc-
cessfully translates this qualitative intuition into a quantita-
tive relation and shows how the CSA of 29Si increases with
S(Td). This observation is non-trivial for the following
reason: Recall that the symmetry measure is a global, over-
all shape parameter and not a specific structural one, and so
what one sees in Figure 4 is a true response to symmetry
changes and not to a specific geometric feature. To the best
of our knowledge this type of correlation has not been iden-
tified so far in the NMR literature. If the trend in Figure 4 is
authentic, then a plot of the CSA as a function of planarity
should produce an opposite trend, because the highest ani-
sotropy, as explained above, is for the perfect planar square;
Figure 5 shows that this is indeed the case.
Interestingly, as seen in Figures 4 and 5 the spread struc-

tures appear at the extrema of the random populations anal-
yses: At the maximum of the S(Td) analysis (Figure 4), but
at the minimum of the correlation with S ACHTUNGTRENNUNG(D4h) (Figure 5);
that is, the spread structures define the limits of the correla-
tion between the CSA and the high symmetries. To under-
stand these observations we recall that the spread struc-

tures—as explained above—are minimally distorted from
both tetrahedricity and planarity, that is, they have a mini-
mal pair of S(Td)/S ACHTUNGTRENNUNG(D4h) values.[17,21] Consider, for instance
all molecules bearing the same S ACHTUNGTRENNUNG(D4h) value (a vertical
cross-section in Figure 5). A structure which belongs to the
spread family and which resides on that cross section will
have the minimal possible S(Td) value for that selected S-
ACHTUNGTRENNUNG(D4h) value, and therefore also the minimal anisotropy;
hence the existence of the spread line at the minimum of
Figure 5. A similar argument explains why that line is at the
maximum of Figure 4: Any structure on that line has the
maximal possible degree of planarity, and hence also the
maximal anisotropy.
Next, it is also interesting to analyze the symmetry sensi-

tivity of the three shielding tensors components, from which
the CSA is composed, and we take the S(Td) for this analy-
sis. The governing effect of the s11 component is clearly evi-
dent in Figure 6.[29] Note that all components start at the
same point, since for a perfect tetrahedron, s11=s22=s33,
and, as the tetrahedron is distorted, the shielding along the
different axes is no longer uniform, and the behavior of the
tensors splits; the maximal shielding component s11 rises, s33

Figure 4. Chemical shielding anisotropy of 29Si is plotted against the
degree of tetrahedral symmetry of the random SiH4 structures (deviation
from tetrahedricity increases from left to right); shown also are the
spread structures (top line).

Figure 5. CSA versus degree of square-planarity. The trend here is re-
versed compared with that of the previous figure, and the spread struc-
tures appear as the lower bound.

Figure 6. Three tensor components versus S(Td). For the perfect tetrahe-
dron, all three components are equal; as the tetrahedron is distorted, the
components gradually separate. Random population: s11 (^), s22 (&), s33
(~); spread population: s11 (~), s22 (^).
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decreases, while s22 is scattered in between. As we have
seen in Figure 4, the CSA increases as the tetrahedron is dis-
torted. Since the CSA is the difference between the largest
component and the average of the other two, one would
indeed expect to see the CSA dictated by s11. Notice also
that unlike the CSA behavior, the lines of the spread tensor
components for s11 and s22 (=s33)

[30] are not at the edges of
the random structures domains. To understand the differ-
ence between the CSA and the tensors behavior from that
point of view, we recall that the symmetry analysis is global,
that is, it treats the molecule as a whole as is the case for
the CSA, and therefore, an extremum in one is also an ex-
tremum in the other; tensorial analysis, on the other hand,
splits this globality into components, and therefore this
joint-extrema argument does not hold in this case.

Conclusion

A quantitative correlation between symmetry as a global
structural feature and NMR anisotropic shielding parame-
ters was shown for the first time. Since the symmetry distor-
tions were random, the correlations found indeed do not
represent specific geometry changes, but symmetry per se. A
group of structures which belong to the common Spread dis-
tortion mode, exhibits extreme behavior with regards to its
NMR parameters.

Programs Availability

CSM programs, as well as chirality measurement programs, are free for
use by writing to the authors.
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